從化學角度看,ITO是一種復合氧化物,其性能很大程度上取決于氧化銦和氧化錫的比例。氧化銦提供高透明度,而氧化錫的摻雜則增強了材料的導電性。通過控制這兩者的配比,ITO能夠在保持光學透明的同時,具備接近金屬的導電能力。這種“透明卻導電”的特性,使得ITO成為制造透明導電膜的理想選擇。
銦回收面臨的主要挑戰(zhàn)包括銦在電子設備中的低濃度和與其他金屬的合金化。傳統(tǒng)的回收方法難以有效提取,需要采用濕法冶金或火法冶金等先進技術。同時,回收過程中需確保電子廢物流的分類和處理,以減少污染物對回收過程的影響。
閉環(huán)之困:損耗與機遇并存
ITO靶材在濺射鍍膜過程中利用率通常僅30%左右,大量含銦廢料(廢舊靶材、邊角料、鍍膜腔室廢料)隨之產生。過去,這些價值的廢料往往被簡單處理或堆積。建立從“廢靶材→再生銦→新靶材”的閉環(huán)體系,成為破解資源約束的黃金路徑。
銦回收的難點在于其“稀”與“散”。一部廢舊手機含銦量不足0.02克,且深嵌于多層結構的液晶面板中,與玻璃、塑料、其他金屬緊密復合。傳統(tǒng)的物理拆解難以分離,濕法冶金(酸/堿浸出)則面臨成分復雜、雜質干擾、易產生二次污染等嚴峻挑戰(zhàn)。